Prematurity, the Eye and Vision

Michael Forrest MB BS, BMedSc (Hons), FRANZCO
Northside Eye Specialists, Nundah
Senior Lecturer, The University of Queensland
Medical Director, Queensland Eye Hospital

The Systemic and Neurologic Impact of Prematurity

- Increased risk of
 - Chronic diseases eg asthma
 - Major neurological impairment
 - moderate/severe mental retardation
 - neurosensory disorders
 - epilepsy
 - cerebral palsy

Other Developmental Deficits

- Increased risk of
 - learning disabilities
 - ADHD
 - borderline mental retardation
 - behavioural problems, especially social and attention problems
 - specific neuropsychological deficits

Ophthalmic Manifestations of Preterm Birth

- Retinopathy of Prematurity
- Refractive Error
- Strabismus
- Cerebral Visual Impairment
- Colour Vision Defects
- Reduced Contrast Sensitivity
- Visual Field Defects
- Decreased Visual Acuity
• Myopia is well known to be associated with prematurity
 • “physiological” myopia
 • Myopia of Prematurity
 • myopia associated with severe ROP
 • Increased risk of all other refractive errors as well
 • overall risk of significant refractive error 29.6% in preterms, 6% in term
 • high hypermetropia
 • astigmatism and anisometropia

Strabismus

- Increased risk, but etiology complex
 - 14.7% incidence during infancy, but incidence remains high through 1st decade
- ET:XT ratio is 3:1 in FT, 1:1 in LBW kids
- Independent risk factors for squint in LBW kids include
 - Family history, ethnic origin, maternal age
 - Smoking, BW, general development quotient
 - Refractive error, anisometropia

Cerebral Visual Impairment in Preterm Children

- Brain injury in premmies due to mild-moderate hypoxia/hypo-perfusion
 - PVL
 - Periventricular haemorrhagic infarction
 - Germinal matrix haemorrhage
 - Cerebellar infarction

Periventricular White Matter

- Most common site of hypoxia/hypo-perfusion-related injury in prem babies
- Occurs in 32% of preemies
- Occurs between V24 and V34
- As well as optic tracts and radiations, cortico-spinal tracts run here
- Spastic diplegia occurs in 5-15% of preemies infants
- Most important in 50% of kids with spastic diplegia
- Neuro-imaging shows
 - Decreased density with irregular body and absence of lateral ventricles
 - Reduced volume of PVWM
 - Deep periventricular calcification or empty delta of ventricles
 - May also see delayed myelination and thinning of the corpus callosum

Patterns of Functional Deficit in CVI

- Impairment in CVI is variable, from NLP to normal VA but with cognitive visual dysfunction
- Cognitive visual dysfunction is a disorder of visual processing; may have normal VA and stereo
- Occurs with cortical lesions
- Visual function with cortex damage vs periventricular white matter damage
- Initial VA is similar (LP & occasional fixation in 22-38% & 49-50% respectively)
- 78% of children with damage to striate cortex improve but only 42% of those with PVL improve
- Significantly more strabismus, nystagmus & optic atrophy in PVL group
- VF defects common, especially in PVL
- Temporal lobe optic radiations less likely to be impaired in PVL
- Temporal lobe optic radiations less likely to be impaired in PVL

CVI: associated ophthalmic and neurologic deficits

- ischemic injuries to retro-geniculate pathways causing CVI lead to different ophthalmic abnormalities if term onset v preterm onset
 - gaze disturbance
 - tonic downgaze in subcortical (preterm) visual loss
 - strabismus in ~80%
 - esotropia more common in subcortical (preterm) visual loss
 - exotropia more common in cortical (term) visual loss
 - nystagmus ~42%
 - now thought that nystagmus did not occur in retrogeniculate disease
 - now recognised that nystagmus occurs in a high frequency of children with PVL
 - optic nerves
 - normal in 54% of cortical visual loss but 29% of subcortical visual loss
 - optic nerve hypoplasia with pseudo-glaucomatous cupping in PVL
 - due to retrograde trans-synaptic degeneration of anterior visual pathways after serial insults have established a normal diameter
 - occurs only in immature visual system
 - results in nature retro-generative pathways do not lead to optic nerve cupping or damage

Retinopathy of Prematurity

- a vaso-proliferative disorder affecting low birth weight premature infants
- still a leading (preventable) cause of blindness throughout the world
- standardised international classification (ICROP) and robust evidence-based treatment guidelines (CRYO-ROP and ET-ROP) have led to improved outcomes in the developed world

Other Brain Injuries in Prematurity

- after profound hypotensive event or cardiopulmonary arrest
- deep gray matter and brainstem nuclei affected
- survival poor, but survivors often have
 - athetosis
 - quadripareisis
 - severe seizure disorders
 - mental retardation

Risk Factors for ROP: Historical Perspective

Cicatricial Changes in ROP

- Peripheral
 - vascular
 - vascular peripheral retinoschisis
 - abnormal non-dichotomous branching
 - circumferential connections between arcades
 - interarteriolar
 - retinal
 - pigmentary changes
 - disc retinoschisis
 - peripheral falciform
 - round mid-peripheral
 - lattice-like degeneration
 - radial breaks
 - TRD, RRD

- Posterior
What are the challenges that ROP poses?

- Examination / interpretation of findings require specialised training
- Infants need multiple examinations, requiring co-ordination between NICUs and ophthalmology screening programs
- Shortage of physicians available to treat ROP

Acknowledgements - The Team

- Justine Glewis, Nurse and Photographer
- Bernice Smith, Nurse and Photographer
- Angela Warren, Nursing Admin
- Drs John McCoombe and Tony Kwok, Laser and Leave Cover
- Dr David Knight, Neonatologist